Twitter Trends
John DeNero & Aditi Muralidharan
University of California, Berkeley
A Hook Into Data Science
A Hook Into Data Science

• Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.
A Hook Into Data Science

- Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.

- Uses Python built-in data types for sequences and maps.
A Hook Into Data Science

• Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.

• Uses Python built-in data types for sequences and maps.

• Students should: process lots of **real data**, create a useful and attractive **visualization**, & understand **data abstraction**.
A Hook Into Data Science

- Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.
- Uses Python built-in data types for sequences and maps.
- Students should: process lots of **real data**, create a useful and attractive **visualization**, & understand **data abstraction**.

What do people tweet?
Draw their feelings on a map to discover trends.
A Hook Into Data Science

• Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.

• Uses Python built-in data types for sequences and maps.

• Students should: process lots of **real data**, create a useful and attractive **visualization**, & understand **data abstraction**.

What do people tweet? Draw their feelings on a map to discover **trends**.
A Hook Into Data Science

- Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.
- Uses Python built-in data types for sequences and maps.
- Students should: process lots of real data, create a useful and attractive visualization, & understand data abstraction.

What do people tweet? Draw their feelings on a map to discover trends.
A Hook Into Data Science

- Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.
- Uses Python built-in data types for sequences and maps.
- Students should: process lots of **real data**, create a useful and attractive **visualization**, & understand **data abstraction**.

What do people tweet?
Draw their feelings on a map to discover **trends**.

| Break each tweet into words | Find all tweets that contain a query word | Group those tweets by US state |
A Hook Into Data Science

- Second project (of four) in our CS 1 course, based on *The Structure and Interpretation of Computer Programs*.
- Uses Python built-in data types for sequences and maps.
- Students should: process lots of **real data**, create a useful and attractive **visualization**, & understand **data abstraction**.

What do people tweet? Draw their feelings on a map to discover **trends**.

| Break each tweet into words | Find all tweets that contain a query word | Group those tweets by US state | Compute the average sentiment of those tweets |
What Does America Think of Texas?
I love the Texas summer but a high of 111 is crazy.
What Does America Think of Texas?

+0.625

I love the Texas summer but a high of 111 is crazy
What Does America Think of Texas?

I love the Texas summer but a high of 111 is crazy.
What Does America Think of Texas?

I love the Texas summer but a high of 111 is crazy

+0.625 -0.5
What Does America Think of Texas?

I love the Texas summer but a high of 111 is crazy.
What Does America Think of Texas?
Finding the Centroid of a State

• Each state is represented by a sequence of polygons.
Finding the Centroid of a State

- Each state is represented by a sequence of polygons.
- Each polygon is represented by a sequence of positions.
Finding the Centroid of a State

- Each state is represented by a sequence of polygons.
- Each polygon is represented by a sequence of positions.

\[
C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)
\]
Finding the Centroid of a State

- Each state is represented by a sequence of polygons.
- Each polygon is represented by a sequence of positions.

\[
C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)
\]

- Students need simple unit tests to solve this problem.
Finding the Centroid of a State

- Each state is represented by a sequence of polygons.
- Each polygon is represented by a sequence of positions.

\[
C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)
\]

\[
A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)
\]

- Students need simple unit tests to solve this problem.
- (!) Some students encounter floating point approximations.
Checking for Data Abstraction

An abstract data type is defined by its behavior, and its use should be independent of its representation.
An abstract data type is defined by its behavior, and its use should be independent of its representation.

```python
def make_position(lat, lon):
    """Return a position...""
    return (lat, lon)

def latitude(position):
    """Return the latitude...""
    return position[0]

def longitude(position):
    """Return the longitude...""
    return position[1]
```
Checking for Data Abstraction

An *abstract data type* is defined by its behavior, and its use should be independent of its representation.

```python
def make_position(lat, lon):
    """Return a position...""
    return (lat, lon) lambda x: lat if x else lon

def latitude(position):
    """Return the latitude...""
    return position[0] position(true)

def longitude(position):
    """Return the longitude...""
    return position[1] position(false)
```
Survey Results
Survey Results

• Compared to three other projects (2 games, 1 interpreter)
Survey Results

• Compared to three other projects (2 games, 1 interpreter)

• Which project did you enjoy the most? (21.4% overall)
 • Female (23.9%) versus male (20.8%)
 • Started programming after 19th birthday (24.2%)
 • Taking first computer science course (19.0%)
 • Final grade of an A (14.5%), B (25.7%), or C (16.7%)
Survey Results

• Compared to three other projects (2 games, 1 interpreter)

• Which project did you enjoy the most? (21.4% overall)
 • Female (23.9%) versus male (20.8%)
 • Started programming after 19th birthday (24.2%)
 • Taking first computer science course (19.0%)
 • Final grade of an A (14.5%), B (25.7%), or C (16.7%)

• Which project taught you the most? (7.8% overall)
 • Female (8.2%) versus male (7.8%)
 • Final grade of an A (3.2%), B (8.8%), or C (13.9%)